A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models
نویسندگان
چکیده
Stochastic transmission dynamic models are especially useful for studying the early emergence of novel pathogens given the importance of chance events when the number of infectious individuals is small. However, methods for parameter estimation and prediction for these types of stochastic models remain limited. In this manuscript, we describe a calibration and prediction framework for stochastic compartmental transmission models of epidemics. The proposed method, Multiple Shooting for Stochastic systems (MSS), applies a linear noise approximation to describe the size of the fluctuations, and uses each new surveillance observation to update the belief about the true epidemic state. Using simulated outbreaks of a novel viral pathogen, we evaluate the accuracy of MSS for real-time parameter estimation and prediction during epidemics. We assume that weekly counts for the number of new diagnosed cases are available and serve as an imperfect proxy of incidence. We show that MSS produces accurate estimates of key epidemic parameters (i.e. mean duration of infectiousness, R0, and Reff) and can provide an accurate estimate of the unobserved number of infectious individuals during the course of an epidemic. MSS also allows for accurate prediction of the number and timing of future hospitalizations and the overall attack rate. We compare the performance of MSS to three state-of-the-art benchmark methods: 1) a likelihood approximation with an assumption of independent Poisson observations; 2) a particle filtering method; and 3) an ensemble Kalman filter method. We find that MSS significantly outperforms each of these three benchmark methods in the majority of epidemic scenarios tested. In summary, MSS is a promising method that may improve on current approaches for calibration and prediction using stochastic models of epidemics.
منابع مشابه
On Calibration and Application of Logit-Based Stochastic Traffic Assignment Models
There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route trigger the application of random utility models in the route choice literature. This paper focuses on path-based, logit-type stochastic route choice models, i...
متن کاملEstimating the Time of a Step Change in Gamma Regression Profiles Using MLE Approach
Sometimes the quality of a process or product is described by a functional relationship between a response variable and one or more explanatory variables referred to as profile. In most researches in this area the response variable is assumed to be normally distributed; however, occasionally in certain applications, the normality assumption is violated. In these cases the Generalized Linear Mod...
متن کاملStatistical Inference for Stochastic Epidemic Models
We consider continuous-time stochastic compartmental models which can be applied in veterinary epidemiology to model the within-herd dynamics of infectious diseases. We focus on an extension of Markovian epidemic models, allowing the infectious period of an individual to follow a Weibull distribution, resulting in more flexible modelling for many diseases. Following a Bayesian approach we show ...
متن کاملDirect likelihood-based inference for discretely observed stochastic compartmental models of infectious disease
Stochastic compartmental models are important tools for understanding the course of infectious diseases epidemics in populations and in prospective evaluation of intervention policies. However, calculating the likelihood for discretely observed data from even simple models – such as the ubiquitous susceptible-infectious-removed (SIR) model – has been considered computationally intractable, sinc...
متن کاملStochastic Modeling of Worm Propagation in Trusted Networks
Abstract There are two types of models useful in the study of worm propagation for a given number of terminals in a trusted network i.e. deterministic and stochastic model. The deterministic models, also known as compartmental models are in the form of epidemic models. These epidemic models consist of different states called compartments so these models are also known as compartmental models. A...
متن کامل