A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models

نویسندگان

  • Christoph Zimmer
  • Reza Yaesoubi
  • Ted Cohen
چکیده

Stochastic transmission dynamic models are especially useful for studying the early emergence of novel pathogens given the importance of chance events when the number of infectious individuals is small. However, methods for parameter estimation and prediction for these types of stochastic models remain limited. In this manuscript, we describe a calibration and prediction framework for stochastic compartmental transmission models of epidemics. The proposed method, Multiple Shooting for Stochastic systems (MSS), applies a linear noise approximation to describe the size of the fluctuations, and uses each new surveillance observation to update the belief about the true epidemic state. Using simulated outbreaks of a novel viral pathogen, we evaluate the accuracy of MSS for real-time parameter estimation and prediction during epidemics. We assume that weekly counts for the number of new diagnosed cases are available and serve as an imperfect proxy of incidence. We show that MSS produces accurate estimates of key epidemic parameters (i.e. mean duration of infectiousness, R0, and Reff) and can provide an accurate estimate of the unobserved number of infectious individuals during the course of an epidemic. MSS also allows for accurate prediction of the number and timing of future hospitalizations and the overall attack rate. We compare the performance of MSS to three state-of-the-art benchmark methods: 1) a likelihood approximation with an assumption of independent Poisson observations; 2) a particle filtering method; and 3) an ensemble Kalman filter method. We find that MSS significantly outperforms each of these three benchmark methods in the majority of epidemic scenarios tested. In summary, MSS is a promising method that may improve on current approaches for calibration and prediction using stochastic models of epidemics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Calibration and Application of Logit-Based Stochastic Traffic Assignment Models

There is a growing recognition that discrete choice models are capable of providing a more realistic picture of route choice behavior. In particular, influential factors other than travel time that are found to affect the choice of route trigger the application of random utility models in the route choice literature. This paper focuses on path-based, logit-type stochastic route choice models, i...

متن کامل

Estimating the Time of a Step Change in Gamma Regression Profiles Using MLE Approach

Sometimes the quality of a process or product is described by a functional relationship between a response variable and one or more explanatory variables referred to as profile. In most researches in this area the response variable is assumed to be normally distributed; however, occasionally in certain applications, the normality assumption is violated. In these cases the Generalized Linear Mod...

متن کامل

Statistical Inference for Stochastic Epidemic Models

We consider continuous-time stochastic compartmental models which can be applied in veterinary epidemiology to model the within-herd dynamics of infectious diseases. We focus on an extension of Markovian epidemic models, allowing the infectious period of an individual to follow a Weibull distribution, resulting in more flexible modelling for many diseases. Following a Bayesian approach we show ...

متن کامل

Direct likelihood-based inference for discretely observed stochastic compartmental models of infectious disease

Stochastic compartmental models are important tools for understanding the course of infectious diseases epidemics in populations and in prospective evaluation of intervention policies. However, calculating the likelihood for discretely observed data from even simple models – such as the ubiquitous susceptible-infectious-removed (SIR) model – has been considered computationally intractable, sinc...

متن کامل

Stochastic Modeling of Worm Propagation in Trusted Networks

Abstract There are two types of models useful in the study of worm propagation for a given number of terminals in a trusted network i.e. deterministic and stochastic model. The deterministic models, also known as compartmental models are in the form of epidemic models. These epidemic models consist of different states called compartments so these models are also known as compartmental models. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2017